
Interference in immunoassays a brief overview

- A perfect assay \rightarrow correct result
- B nonspecific binding of a labeled detection antibody on blocked surface \rightarrow false positive result
- C interfering protein binds detection antibody and prevents binding of the analyte \rightarrow false negative result
- D capture antibody binds detection antibody (or label of the detection antibody) \rightarrow false positive result
- E cross-linking caused by heterophilic antibodies or HAMAs (Human anti-mouse antibodies); capture antibody is linked with the detection antibody → false positive result
- $\mathsf{F}~$ cross-reactivity of a sample protein with capture antibody \rightarrow false negative result
- $\mathsf{G}\,$ $\,$ cross-reactivity of a sample protein with detection antibody \rightarrow false negative result
- H $\,$ $\,$ cross-reactivity of a sample protein with capture and detection antibody \rightarrow false positive result
- $\ensuremath{\,\:}$ masking of the analyte with a sample protein \rightarrow false negative result
- $\mathsf{J}\$ $\ \mathsf{HAMA}\ \mathsf{binds}\ \mathsf{capture}\ \mathsf{antibody}\ {\rightarrow}\ \mathsf{false}\ \mathsf{negative}\ \mathsf{result}$
- ${\rm K}~$ HAMA binds detection antibody $\rightarrow~{\rm false}~{\rm negative}~{\rm result}$
- $\mathsf{L}~$ binding of the interfering antibodies to the capture antibody \rightarrow false negative result
- M binding of the interfering antibodies to the detection antibody \rightarrow false negative result

Interferences can be classified due to their biochemical reasons and their impact on assay performance.

1. Interference caused by antibodies from patient samples

e.g. HAMA (human anti-mouse antibodies), HAAA (human anti-animal antibodies), heterophilic antibodies and rheumatoid factors from patient samples

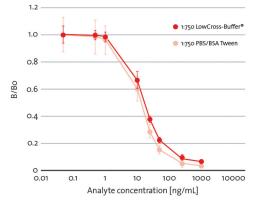
2. Interference caused by endogenous components of the sample

e.g. albumins, complement, lysozyme, fibrinogen, α-1 Antitrypsin, atypically high lipid-, salt- or sugar concentrations as well as atypical viscosities

3. Interference caused by assay components

Assay components - like fluorescent or enzymatic labels - can cross-react with substances from the sample or change binding properties of the assay antibodies.

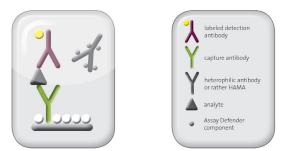
ightarrow All these interferences can lead to false results


Solutions to solve your interference problem:

LowCross-Buffer®

Sample and antibody diluent for minimizing nonspecific binding, cross-reactivities and matrix effects in immunoassays.

LowCross-Buffer® suppresses the low/medium affinities but keeps the highest affinities untouched at the same time.



Calibration curve of an ELISA: The analyte was diluted 1:750 in PBS/BSA Tween or 1:750 in LowCross-Buffer®. The ELISA with PBS/BSA Tween shows, despite the high dilution factor, a very high coefficient of variation (error bar) due to interference. The precision of the ELISA with LowCross-Buffer® as assay diluent is significantly better.

Assay Defender®

Sample diluent for blocking HAMA and other high affinity interfering antibodies. Additionally minimizes nonspecific binding, cross-reactivities and matrix effects in immunoassays based on human or animal body fluids.

Components of Assay Defender® prevent binding of the interfering antibody \rightarrow correct result

